Grammar induction using bit masking oriented genetic algorithm and comparative analysis

نویسندگان

  • Hari Mohan Pandey
  • Ankit Chaudhary
  • Deepti Mehrotra
چکیده

This paper presents bit masking oriented genetic algorithm (BMOGA) for context free grammar induction. It takes the advantages of crossover and mutation mask-fill operators together with a Boolean based procedure in two phases to guide the search process from ith generation to (i + 1)th generation. Crossover and mutation mask-fill operations are performed to generate the proportionate amount of population in each generation. A parser has been implemented checks the validity of the grammar rules based on the acceptance or rejection of training data on the positive and negative strings of the language. Experiments are conducted on collection of context free and regular languages. Minimum description length principle has been used to generate a corpus of positive and negative samples as appropriate for the experiment. It was observed that the BMOGA produces successive generations of individuals, computes their fitness at each step and chooses the best when reached to threshold (termination) condition. As presented approach was found effective in handling premature convergence therefore results are compared with remature convergence the approaches used to alleviate premature convergence. The analysis showed that the BMOGA performs better as compared to other algorithms such as: random offspring generation approach, dynamic allocation of reproduction operators, elite mating pool approach and the simple genetic algorithm. The term success ratio is used as a quality measure and its value shows the effectiveness of the BMOGA. Statistical tests indicate superiority of the BMOGA over other existing approaches implemented. © 2015 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maintaining regularity and generalization in data using the minimum description length principle and genetic algorithm: Case of grammatical inference

In this paper, a genetic algorithm with minimum description length (GAWMDL) is proposed for grammatical inference. The primary challenge of identifying a language of infinite cardinality from a finite set of examples should know when to generalize and specialize the training data. The minimum description length principle that has been incorporated addresses this issue is discussed in this paper...

متن کامل

CPA on COLM Authenticated Cipher and the Protection Using Domain-Oriented Masking

Authenticated encryption schemes are important cryptographic primitives that received extensive attention recently. They can provide both confidentiality and authenticity services, simultaneously. Correlation power analysis (CPA) can be a thread for authenticated ciphers, similar to the any physical implementation of any other cryptographic scheme. In this paper, a three-step CPA attack against...

متن کامل

Comparative Analysis of Neural Network Training Methods in Real-time Radiotherapy

Background: The motions of body and tumor in some regions such as chest during radiotherapy treatments are one of the major concerns protecting normal tissues against high doses. By using real-time radiotherapy technique, it is possible to increase the accuracy of delivered dose to the tumor region by means of tracing markers on the body of patients.Objective: This study evaluates the accuracy ...

متن کامل

An Optimal Selection of Induction Heating Capacitance by Genetic Algorithm Considering Dissipation Loss Caused by ESR (TECHNICAL NOTE)

In design of a parallel resonant induction heating system, choosing a proper capacitancefor the resonant circuit is quite important. The capacitance affects the resonant frequency, outputpower, Q-factor, heating efficiency and power factor. In this paper, the role of equivalent seriesresistance (ESR) in the choice of capacitance is significantly recognized. Optimal value of resonancecapacitor i...

متن کامل

Optimum Drill Bit Selection by Using Bit Images and Mathematical Investigation

This study is designed to consider the two important yet often neglected factors, which are factory recommendation and bit features, in optimum bit selection. Image processing techniques have been used to consider the bit features. A mathematical equation, which is derived from a neural network model, is used for drill bit selection to obtain the bit’s maximum penetration rate that corresponds ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Appl. Soft Comput.

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2016